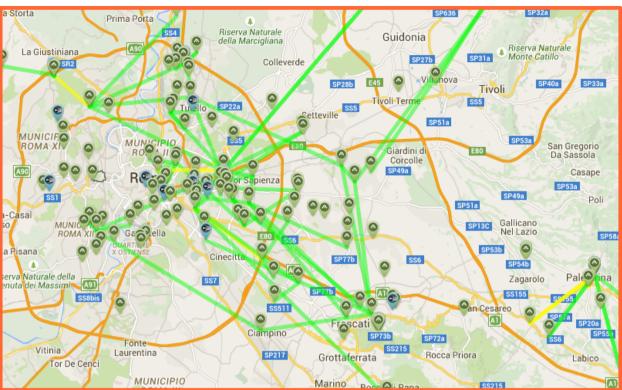
IEs, we Scan!

Using proprietary beacon extensions to facilitate wireless community link building

Claudio Pisa clauz@ninux.org @cl4u2


ninux.org

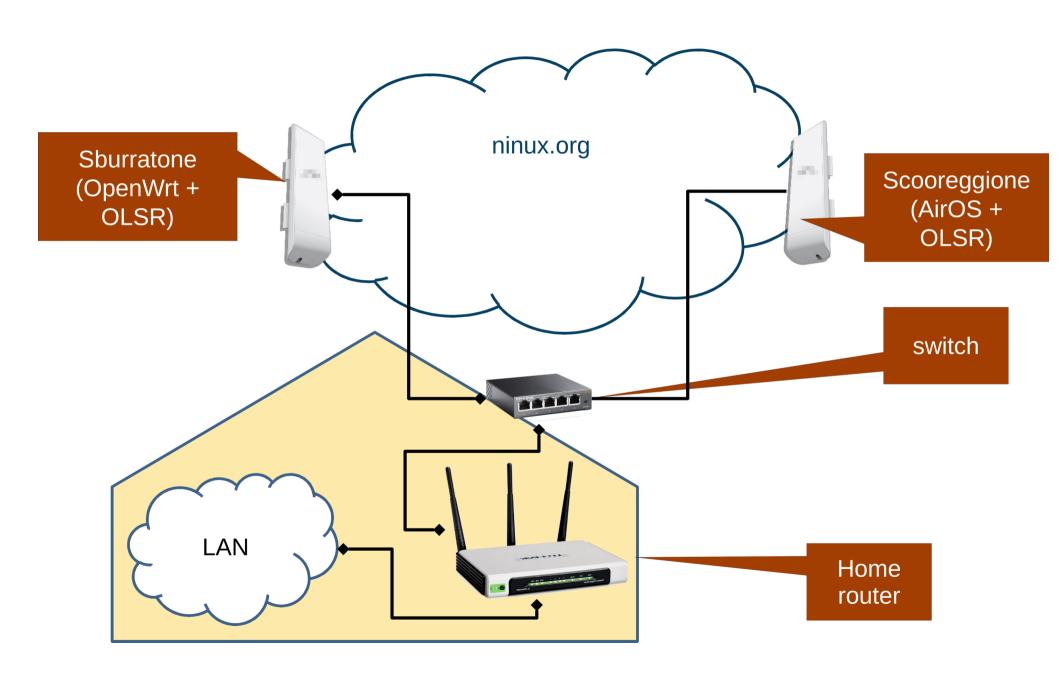
- Community network in Italy
- Islands
 - each island is in a geographical region
 - each island uses a different routing protocol

Ninux Rome

- OLSR (v1)
- IPv4 + IPv6 network
 - Uplinks:
 - BGP peerings (both IPv6 and IPv4)
 - DSLs (IPv4 only)
- Experimentation-oriented

Ninux Firmwares

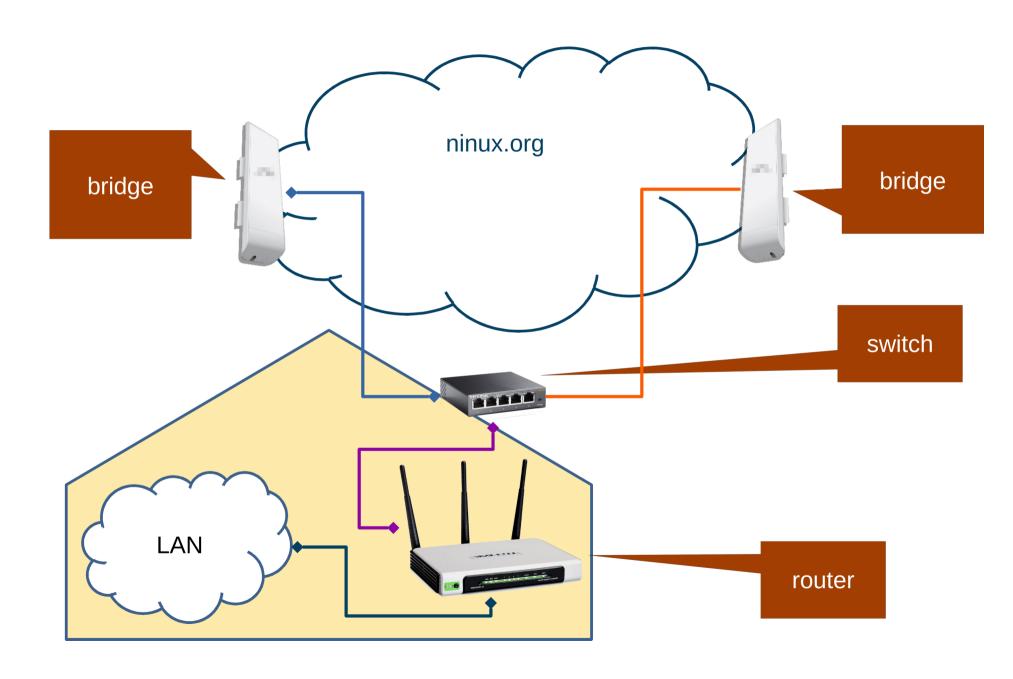
Scooreggione

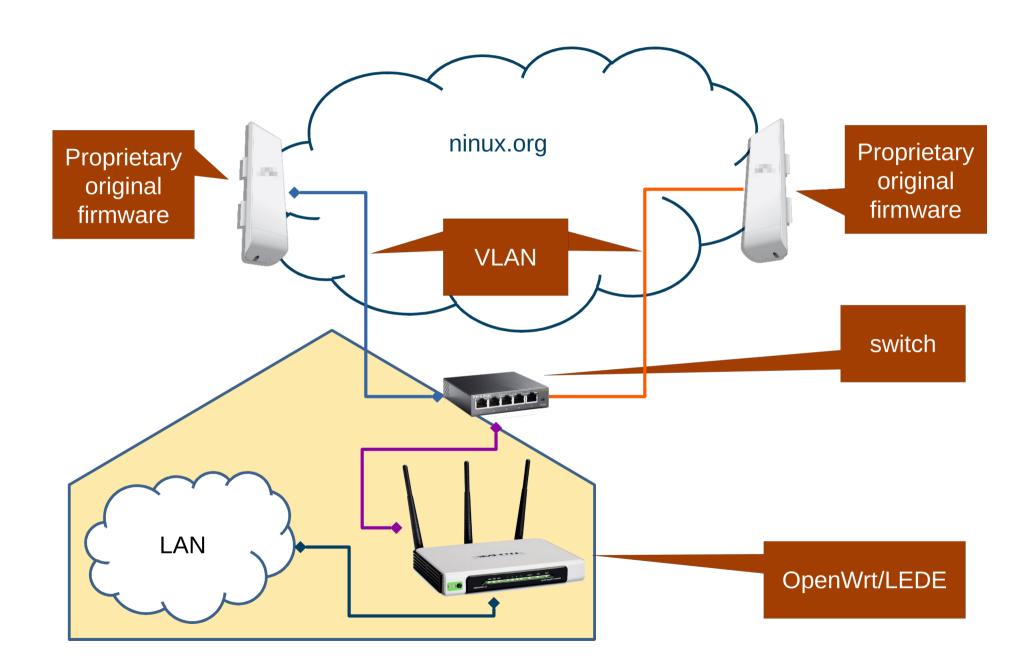

- customized OpenWrt with OLSR (v1)

Sburratone

- customized Ubiquiti AirOS with OLSR
 - Reversed firmware image at first, then Ubiquiti released the AirOS SDK
- Why? Very active people joined but they wanted to use proprietary firmware. Their claims:
 - driver performance
 - and use of wireless proprietary extensions (e.g. AirMax)
 - user interfaces
 - firmware features
 - site survey (more about this later)
 - performance tests

— ...


Ninux Roma node - routing on the roof


No more SDK!

- Ubiquiti decided to close its AirOS SDK in 2013
- Proposal by some: let's use the proprietary original firmware on the CPEs and move the routing to another device

ninux Roma node - ground routing

ninux Roma node - ground routing

So...

- Result: we have a lot of different firmwares and node setups in the network
 - Sburratone
 - Scooreggione
 - Proprietary firmwares
 - Vanilla OpenWrt
 - Vanilla LEDE
 - Libremesh

– ...

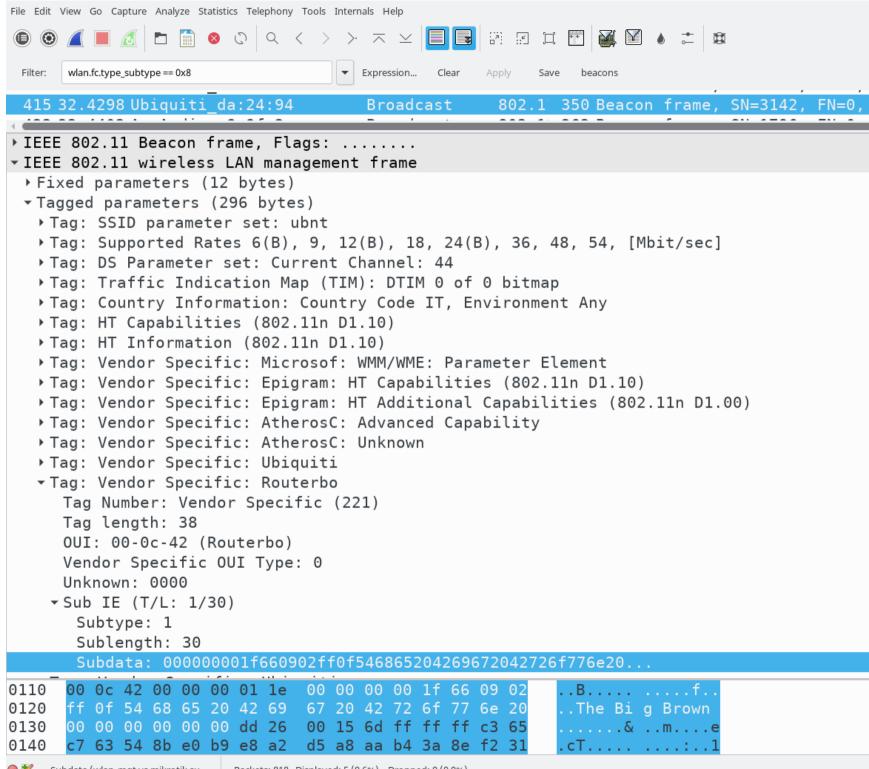
Site Survey

- One of the features missing in OpenWrt/LEDE according to proprietary firmware supporters is the "site survey" functionality
 - To understand what you are scanning when you are on the roof you can either:
 - use a unique SSID on each AP
 - maintain a database of MAC addresses
 - rely on the hostname as broadcast by the proprietary extensions

Site Survey

Scanned Frequencies:

5.18GHz 5.185GHz 5.19GHz 5.195GHz 5.20GHz 5.20GHz 5.215GHz 5.215GHz 5.22GHz 5.225GHz 5.235GHz 5.235GHz 5.24GHz 5.26GHz 5.26GHz 5.275GHz 5.275GHz 5.275GHz 5.285GHz 5.29GHz 5.295GHz 5.305GHz 5.305GHz 5.315GHz 5.315GHz 5.32GHz 5.505GHz 5.505GHz 5.515GHz 5.515GHz 5.515GHz 5.525GHz 5.625GHz 5.725GHz 5.72


Scanning						

MAC Address	SSID	Device Name	Radio Mode	Encryption	Signal / Noise, dBm	Frequency, GHz / Channel
00:0B:6B:84:B1:59	uni-cassia-01	rw1-css	802.11a	NONE	-77 / -93	5.18 / 36
80:2A:A8:2E:F8:91			802.11n airMA	X NONE	-83 / -93	5.2 / 40
80:2A:A8:FC:8A:48			802.11n airMA	X NONE	-81 / -93	5.23 / 46
00:02:6F:9D:4A:A5			802.11a	NONE	-84 / -92	5.24 / 48
90:35:6E:41:CE:8E	Vodafone-WiFi		802.11ac	NONE	-72 / -90	5.26 / 52
00:27:22:00:50:33	ninux.org	AG27CDAmpezzoA	802.11n airMA	X NONE	-83 / -90	5.26 / 52
00:0C:42:23:03:67	W7_PTVLoc	000C42230367	802.11a	NONE	-72 / -90	5.26 / 52
4C:5E:0C:85:D5:20	GigaWisp-PP-CLN	PP_FDN_CLN	802.11n	NONE	-86 / -94	5.28 / 56
68:72:51:08:02:87			802.11n airMA	X NONE	-84 / -93	5.29 / 58
00:27:22:10:F4:42	ninux.org	NB5DGalliGPetr	802.11n airMA	X NONE	-62 / -93	5.5 / 100
FA:8F:CA:7C:AC:9C			802.11n	NONE	-87 / -96	5.52 / 104
4C:5E:0C:88:69:25	uniwifi	rw1-camilluccia	802.11n	NONE	-84 / -96	5.54 / 108
00:27:22:92:9B:88	ninux.org	RM5CDAmpezzoSN	802.11n airMA	X NONE	-67 / -96	5.54 / 108
24:A4:3C:9A:38:85	ninux.org	RM5DGalliSNode	802.11n airMA	X NONE	-36 / -95	5.6 / 120
D4:CA:6D:30:8C:93	GigaWisp	BM_FDN_DX	802.11n	NONE	-80 / -95	5.62 / 124
00:1B:B1:EF:AE:08	uniwifi	rw4-ms	802.11a	NONE	-87 / -93	5.18 / 36
E4:8D:8C:F4:A1:7C	powergas	E48D8CF4A17C	802.11ac	WPA2	-72 / -93	5.18 / 36
4C:5E:0C:D4:4E:67	VGL-CAVO	AP_VGL	802.11n	WPA2	-80 / -93	5.18 / 36
E2:B9:E5:65:B3:5F	FASTWEB-1-65B357		802.11ac	WPA2	-87 / -92	5.24 / 48
90:35:6E:41:CE:8C	Vodafone-30544266		802.11ac	WPA2	-73 / -90	5.26 / 52
00:0C:42:6D:FC:44	OIS71711AP55	RMHHAP6-CPE250	802.11n	WPA2	-77 / -95	5.32 / 64
4C:60:DE:79:9D:D6	WNHD3004		802.11n	WPA	-88 / -93	5.5 / 100
E2:B9:E5:97:1E:13	FASTWEB-1-971E0B 5ghz		802.11ac	WPA2	-85 / -93	5.5 / 100
32:91:8F:4A:42:E1	Telecom-56525017		802.11n	WPA	-82 / -96	5.52 / 104
9E:97:26:E4:D2:23	Telecono-15659291		802.11n	WPA	-87 / -96	5.56 / 112
4C:5E:0C:F6:40:E5	OIS71811RMMAG1	4C5E0CF640E5	802.11n	WPA2	-88 / -95	5.6 / 120
00:0C:42:DE:A8:95	OIS71811RMMAG21	RM-Cassia-AP26	802.11n	WPA2	-77 / -91	5.68 / 136
A0:63:91:DB:2A:05	NETGEAR15-5G-2		802.11ac	WPA2	-87 / -91	5.7 / 140
4C:5E:0C:8A:F3:EF	OIS71711AP56	RM213AP56	802.11n	WPA2	-81 / -87	5.805 / 161
F2:9F:C2:A2:4D:CC			802.11ac	WPA2	-86 / -93	5.18 / 36
24:A4:3C:AC:5A:A4	salarialuca.ninux.org	Amendola2Salar	802.11n airMA	X NONE	-84 / -93	5.185 / 37
70:85:C6:88:0C:5C	SkyLink-880C5C		802.11n	WPA2	-87 / -93	5.22 / 44

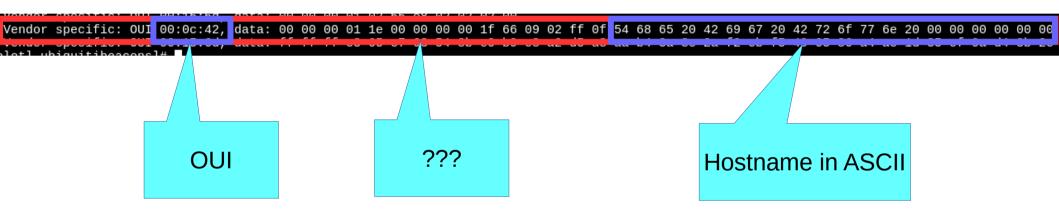
Site Survey

- How is this done?
- Proprietary extensions to the IEEE 802.11 beacons

Information Elements (IEs)

- IEEE 802.11 management frames may contain groups of fields called Information Elements (in a way similar to TLVs)
 - The Beacon frames may contain Vendor-Specific IEs
 - The Vendor Specific IE is used to carry information not defined in the standard

Element ID	Length	OUI	Vendor-specific content
1	1	3	n-3 (octects)


- The OUI field shall be a public OUI assigned by the IEEE
 - In our case 00:0c:42 (assigned to Routerboard.com Mikrotik)

iw dev wlan0 scan -u

```
SSS 44:d9:e7:da:24:94(on wlan1)
      TSF: 2111638234 usec (0d, 00:35:11)
      freq: 5220
      beacon interval: 100 TUs
      capability: ESS ShortSlotTime (0x0401)
      signal: -59.00 dBm
      last seen: 3220 ms ago
      Information elements from Probe Response frame:
      SSID: ubnt
      Supported rates: 6.0* 9.0 12.0* 18.0 24.0* 36.0 48.0 54.0
      DS Parameter set: channel 44
      Country: IT
                    Environment: Indoor/Outdoor
             Channels [36 - 84] @ 23 dBm
Channels [52 - 100] @ 23 dBm
             Channels [100 - 260] @ 30 dBm
      HT capabilities:
             Capabilities: 0x1ef
                    RX LDPC
                    HT20/HT40
                    SM Power Save disabled
                    RX HT20 SGI
                    RX HT40 SGI
                    TX STBC
                    RX STBC 1-stream
                    Max AMSDU length: 3839 bytes
                    No DSSS/CCK HT40
             Maximum RX AMPDU length 65535 bytes (exponent: 0x003)
             Minimum RX AMPDU time spacing: No restriction (0x00)
             HT RX MCS rate indexes supported: 0-15
             HT TX MCS rate indexes are undefined
      HT operation:
                primary channel: 44
                secondary channel offset: above
               STA channel width: any
              * RIFS: 1
               HT protection: no
               non-GF present: 0
               OBSS non-GF present: 0
                dual beacon: 0
               dual CTS protection: 0
               STBC beacon: 0
               L-SIG TXOP Prot: 0
              * PCO active: 0
              * PCO phase: 0
      WMM:
               Parameter version 1
              * u-APSD
               BE: CW 15-1023, AIFSN 3
              * BK: CW 15-1023, AIFSN 7
              * VI: CW 7-15, AIFSN 2, TXOP 3008 usec
              * VO: CW 3-7, AIFSN 2, TXOP 1504 usec
      Vendor specific: OUI 00:03:7f, data: 01 01 00 00 ff 7f
      Vendor specific: OUI 00:03:7f, data: 04 01 00 02 00 0a 00
     Vendor specific: OUI 00:0c:42, data: 00 00 00 01 1e 00 00 00 1f 66 09 02 ff 0f 54 68 65 20 42 69 67 20 42 72 6f 77 6e 20 00 00 00 00 00 00
```

root@volotl_uhiquitiheaconsl#

Hostname IEs format


```
<devname> set channel <channel> |HI20|HI40+|HI40-|
        phy <phyname> set channel <channel> [HT20|HT40+|HT40-]
        dev <devname> set freq <freq> [HT20|HT40+|HT40-]
        dev <devname> set freq <control freq> [20|40|80|80+80|160] [<center f
        phy <phyname> set freq <freq> [HT20|HT40+|HT40-]
        phy <phyname> set name <new name>
        dev <devname> set mcast_rate <rate in Mbps>
        dev <devname> set peer <MAC address>
        dev <devname> set noack_map <map>
        dev <devname> set 4addr <on|off>
        dev <devname> set type <type>
        dev <devname> set meshid <meshid>
        dev <devname> set monitor <flag>*
        dev <devname> set mesh_param <param>=<value> [<param>=<value>]*
        dev <devname> set power_save <on|off>
        dev <devname> set bitrates [legacy-<2.4|5> <legac
vht-mcs-<2.4|5> <NSS:MCSx,MCSy... | NSS:MCSx-MCSy>*] [sg:
        dev <devname> get mesh param [<param>]
        dev <devname> get power save <param>
Commands that use the netdev ('dev') can also be given the
'wdev' instead to identify the device.
You can omit the 'phy' or 'dev' if the identification is
e.g. "iw wlan0 info" or "iw phy0 info". (Don't when script
```

Do NOT screenscrape this tool, we don't consider its output stable.

sitesurvey script

- busybox-friendly shell script
- Takes the output of the vendor elements from iw -u and performs a translation to ASCII

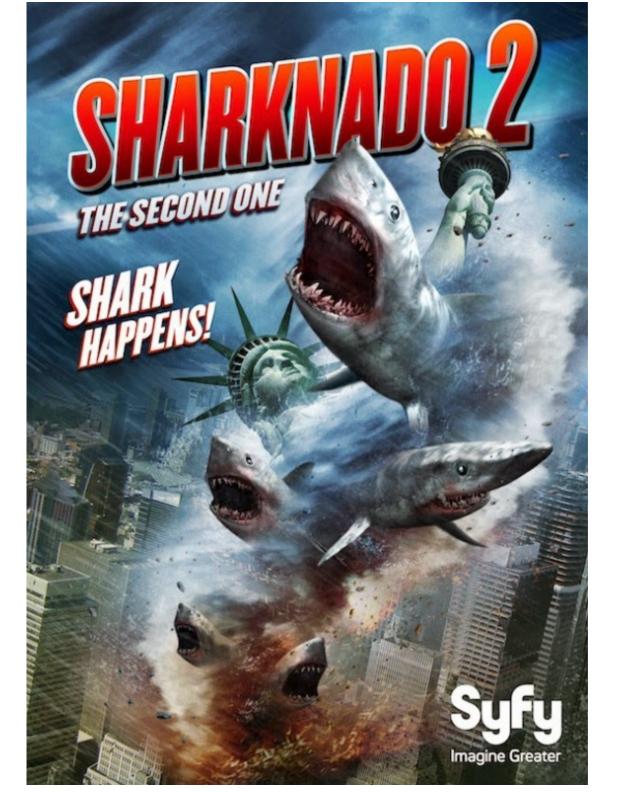
DCC	CCID	STONAL	FDFO	HOCTNAME
BSS	SSID	SIGNAL	FREQ	HOSTNAME
a2:63:91:aa:aa:aa	D-Link	-82.00 dBm	2412	
c0:4a:00:bb:bb:bb	ninux.org	-79.00 dBm	2437	experiment
44:d9:e7:cc:cc	ubnt	-51.00 dBm	5220	fox

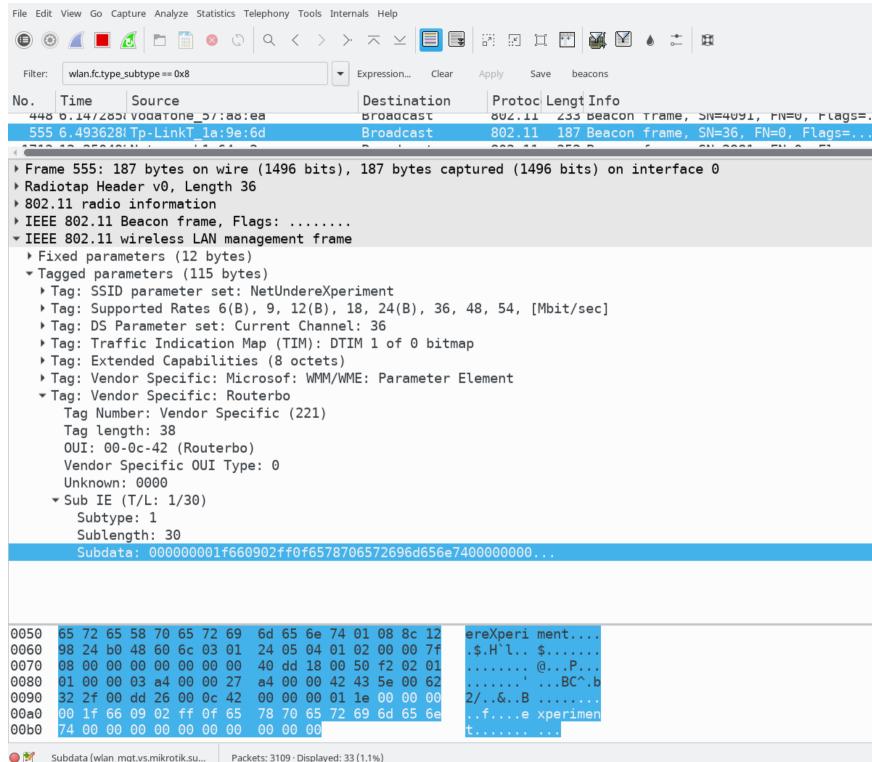
And on the AP side?

- vendor_elements in hostapd.conf
- generatevendorelements script

generatevendorelements script

echo vendor_elements=\$(./generatevendorelements experiment) >> hostapd.conf
hostapd hostapd.conf


Site Survey


Scanned Frequencies:

5.18GHz 5.19GHz 5.19GHz 5.29GHz 5.205GHz 5.205GHz 5.21GHz 5.21GHz 5.22GHz 5.22GHz 5.23GHz 5.23GHz 5.23GHz 5.24GHz 5.26GHz 5.265GHz 5.27GHz 5.27GHz 5.275GHz 5.285GHz 5.29GHz 5.29GHz 5.29GHz 5.305GHz 5.31GHz 5.315GHz 5.31GHz 5.32GHz 5.505GHz 5.505GHz 5.51GHz 5.515GHz 5.52GHz 5.525GHz 5.53GHz 5.535GHz 5.535GHz 5.545GHz 5.555GHz 5.555GHz 5.565GHz 5.57GHz 5.575GHz 5.585GHz 5.585GHz 5.59GHz 5.595GHz 5.605GHz 5.61GHz 5.615GHz 5.62GHz 5.625GHz 5.63GHz 5.635GHz 5.645GHz 5.655GHz 5.655GHz 5.665GHz 5.675GHz 5.685GHz 5.685GHz 5.69GHz 5.695GHz 5.695GHz 5.675GHz 5.685GHz 5.685GHz 5.695GHz 5.695G

MAC Address	SSID	Device Name	Radio Encryption	n Signal / Noise, dBm	Frequency, GHz / Channel
38:10:D5:A8:9F:2C	acasa		802.11ac WPA	-64 / -97	5.22 / 44
64:59:F8:20:90:4C	Vodafone-fattah		802.11ac WPA2	-89 / -96	5.26 / 52
64:59:F8:5B:8F:EC	Vodafone-33838262		802.11ac WPA2	-83 / -96	5.5 / 100
64:59:F8:20:90:4E	Vodafone-WiFi		802.11ac NONE	-90 / -96	5.26 / 52
C0:4A:00:1A:9E:6D	NetUndereXperiment	experiment	802.11a NONE	-59 / -98	5.18 / 36

Support in OpenWrt/LEDE

- iw scan -u is not working
 - in both OpenWrt and LEDE
 - a patch disables the -u option
 - works on old OpenWrt versions
 - tried on Attitude Adjustment
- hostapd vendor_elements
 - ubus support in LEDE 17.01 and OpenWRT 15.05

200-reduce-size.patch

```
196 @@ -1835,6 +1838,7 @@ void print_ies(unsigned char *ie, int ie
197
                        ieprinters[ie[0]].name &&
198
                        ieprinters[ie[0]].flags & BIT(ptype)) {
199
                            print_ie(&ieprinters[ie[0]], ie[0], ie[1], ie + 2);
200 +#if 0
                   } else if (ie[0] == 221 /* vendor */) {
201
202
                            print_vendor(ie[1], ie + 2, unknown, ptype);
203
                    } else if (unknown) {
204 @@ -1844,6 +1848,7 @@ void print_ies(unsigned char *ie, int ie
                            for (i=0; i<ie[1]; i++)
205
206
                                    printf(" %.2x", ie[2+i]);
207
                            printf("\n");
208 +#endif
209
210
                   ielen -= ie[1] + 2;
211
                    ie += ie[1] + 2;
```

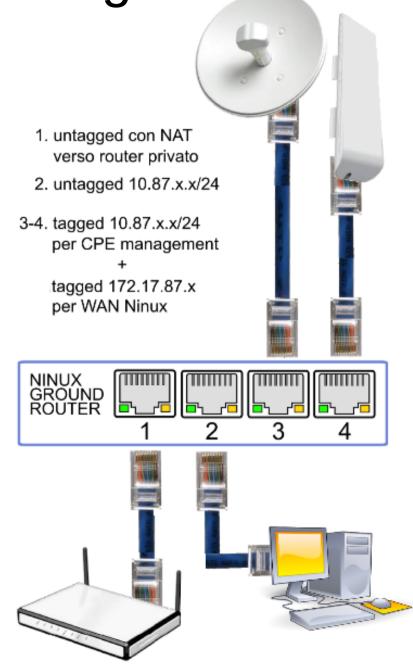
iw binary: 75049 bytes iw binary without the above hunks: 79869 bytes Delta = 4820 bytes

vendor_elements support in OpenWrt/LEDE

```
ubus -v list hostapd.wlan0
ubus call hostapd.wlan0 set_vendor_elements
'{"vendor_elements":
"dd26000c42000000011e000000001f660902ff0f6578706572696d656e
74000000000000000000"}'
ubus call hostapd.wlan0 update_beacon
```

Notes

- scraping iw is bad
 - a parsable (JSON?) output option for iw would be nice to have :)
- How to bring back iw scan -u?
 - remove the hunk from patch 200?
 - submit a new patch?
 - create a new "iw-full" package?


References

- https://github.com/cl4u2/ieswescan
- No More AirOS SDK https://community.ubnt.com/t5/airOS-SDK-Custom-Development/No-more-SDK/tdp/440237

Thank you!

Ground Routing

- Several outdoor routers:
 - In bridge mode
 - Each one on a different
 VLAN
- A single router:
 - usually indoor, on the ground
 - runs olsrd (over OpenWrt)
 - Routing logic

