Model Train'ing like a Pro: Performance Evaluation of a Wireless SDN

yanosz
freifunk@yanosz.net

November 15th, 2020

> "A mesh is a network topology following no predefined structure or pattern"
-- Unknown author
"Software Defined Networking (SDN; RFC 7246) is a paradigm focusing on a programmable forwarding plane. That is separating control from forwarding functionality."

Agenda

- Part 1: Getting a master's degree by playing with an old Playmobile toy train
- Part 2: How this could be relevant for Wireless Community Mesh Networks.

ETCS balises Lutherstadt Wittenberg, bigbug21, CC-BY-SA 25

Part 1: Getting a master's degree

By playing with an old Playmobile toy train

1. Hypothesis

"Seamless horizontal soft handovers in an SDN-based IEEE 802.11 train-to-ground backhaul provide capacity and latency suitable for internet provisioning inside a running train."

- Train passes Base Stations / Access Points (AP)

- IEEE 802.11 train-to-ground network feasible?
- Early experiments: IEEE 802.11g (~ 10-25 Mbit/s UDP) [YSS+10]
- Commercial Reality: Broadcast MAC for train control: [FBKS17, FBKS18] Avoids handovers by broadcasting
- Reuse existing Control Plane (i.e. SDN): Research subject regarding wireless

- Adaptations to WIMAX / LTE:

Mobility Model, Environment, Soft Handovers, Internet Provisioning ./. Train Control

- January 29th 2020, Google Scholar: 6470 publications \rightarrow Classification by surveys [ZA14]:

Position based, Dual radio, Moving Cell / single frequency, radio over fiber, leaky cable, satellite

Work	Metrics	Evaluation	Result
[HH11]	Execution time	Mathematical model	Scanning for 802.16 base stations can be avoided
[KLW12]	Handover latency Handover failure rate Throughput Delay	Simulation	Seamless handover for LTE on- board femtocell
[AJA ${ }^{\text {12] }]}$	Throughput End-to-end delay Jitter Packet error rate WiMAX delay Handover delay	Simulation	General performance gain by re- ducing 802.16 scanning delay
[FF12]	Handover success rate Handover delay Handover frequencies	Mathematical model Simulation	Two schemes for LTE-A: 1) Reduce handover delay, 2) Avoid unneces- sary handovers
[CFL12]	Received signal strength Handover probability Handover success rate	Mathematical model Simulation	Beamforming can improve han- dovers for LTE

Table 1: Position based schemes

Work	Metrics	Evaluation	Result
$[$ DLML12 $]$	Interruption time Call dropping rate	Simulation	Interruption time reduced by 50%, call dropping rate below 1%
$[$ LCCS14]	Latency Satisfaction Packet loss Signalling traffic	Simulation Mathematical model	Low signalling traffic due to group handover
$\left[\mathrm{TZL}^{+} 11\right]$	Handover \& failure probability Throughput Interruption time	Simulation Mathematical model	Non-interrupted communication, re- duced delay, reduced signalling
$[$ YLDF10]	Handover probability Capacity Throughput	Simulation	No omission or downtime on com- bined link
$[$ LYW14]	Failure probability	Simulation Mathematical model	Reduced failure probability
$[$ LZF12]	Outage \& success probability	Simulation Mathematical model	Dual-antenna achieves handover
$[$ sCCS14 $]$	Packet loss Success probability Signaling traffic Handover latency	Simulation Mathematical model	Bicasting can be avoided

2.3 Mobility in Wireless Software Defined Mesh Networks [RJS+17]

Client mobility

- Non-SDN clients in Campus networks
- Wired Access Points
- But: Complexity

Work	Type	Metrics	Evaluation	Result
$\left[\mathrm{SSZM}^{+} 12\right]$	Distributed VAP	HTTP goodput	Physical experiment	Seamless handover using a custom agent
$\left[\mathrm{DVK}^{+} 12\right]$	Cloud VAP	TCP throughput Round-trip-times Packet loss	Physical experiment	Cloud based energy effi- ciency
$[$ ZZX14]	Split-MAC	TCP throughput UDP throughput	Simulation	Improved performance by split MAC approach
$[$ SS15 $]$	Split-MAC	TCP throughput UDP throughput	Simulation	Reduced load compared to [ZZX14]

Wireless Mesh Topology changes

- SDN-capable mesh nodes, for wireless ISP
- MANET based [BTD06], hence too slow to adapt

Work	Discovery	Metrics wrt topology changes	Evaluation	Result
[DKB11]	OLSR	Outage duration	Physical experiment	Practical feasibility of OpenFlow and IEEE 802.11 wrt mobility - 200 ms outage for hard-handover.
$\begin{aligned} & {\left[\mathrm{CGA}^{+} 12\right]} \\ & {\left[\mathrm{CGA}^{+} 13\right]} \end{aligned}$	802.11 s	None	Physical experiment	Characterizes QoE in static backhaul
[DPSBM13]	OLSR	None	Emulation	OpenFlow can be used for traffic engineering conventional WMN
[$\left.\mathrm{YGH}^{+} 14\right]$	batman-adv	None	Physical experiment	OpenFlow can be used for traffic engineering conventional WMN
[HLGZ15]	(static)	None	Simulation	Frequency allocation can be optimized
$\begin{aligned} & {\left[\mathrm{NAK}^{+} 15\right]} \\ & {\left[\mathrm{KHB}^{+} 12\right]} \end{aligned}$	(custom)	None	Various	Mature architecture for providing real world internet connectivity
[YCF15]	static	None	Phyiscal experiment	OpenFlow can be used for traffic engineering conventional WMN
[Pat16]	OpenFlow (ext)	Controller Switch reconnection latency	Emulation	OpenFlow based topology discovery and routing implementation for WMN
[LBF16]	Custom	None	Simulation	OpenFlow surpasses mesh protocols in terms of overhead, convergence time and packet loss
$\left[\mathrm{BQCM}^{+} 16\right]$	OpenFlow (ext)	None	Physical experiment	OpenFlow allows loadbalancing wrt. cpu and channel load

- Only two works - 2019
- [FAT19] Franco, Aguado, Toledo.

An Adaptable Train-to-Ground Communication: Architecture Based on the 5G Technological Enabler SDN. Electronics 8.6 (2019): 660.
But: Train Control System, Duplicates Packets, TCP only (MPTCP)

- [SSK19] Sen, Krishna, Sivalingam, Narayanan

Persistent WiFi connectivity during Train journey: An SDN based approach. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management. But: No IPv6, Custom protocols, NAT, Tunneling (overhead), Excludes certain trains, only averaged performance values

Work	Metrics	Evaluation	Result
$[$ FAT19]	Multipath TCP throughput MQTT application level delay	Emulation	Delay below 60 ms, mature design
[SSK19]	TCP delay \& throughput UDP delay \& throughput	Simulation	Feasibility of an IEEE 802.11 based SDN for the use-case subject to this thesis

3. System Design: What is SDN?

Taxonomy Regarding RFC 7246

- Application Plane

Handover application written in Python

- Control Plane

SDN-Controller: Ryu, OpenFlow
Southbound: OpenFlow

- Forwarding Plane

OpenFlow / Open vSwitch

- Management Plane

Static inventory (i.e. JSON files)
Southbound: MQTT, files

- Operational Plane

Local Agent (Python), Linux CLI utilities

- Outside of RFC 7246

ETCS-Positioning (mock): MQTT / JSON

Location Based Scheme / hard-handover: MP / OP sufficient - i.e. CP, hence no SDN SDN (i.e. OP / FP) functionality steers traffic when two links are existing (soft-handover)
.

C

4.1 Train
 4.1 Train

4.2 Track

4.3 Network Model

4.4 Watch it running

- Code: https://git.fslab.de/jluehr_ext/trainmesh
- Video: https://www.youtube.com/channel/UCOrOHTunRA2dtMWBWdDsdwQ

Part 2: How it could be relevant

For Wireless Community Mesh Networks

5. Software Defined Wireless Mesh Networks

- Centralized Controllers: Challenging Assumption
- Distributed ./. Non-Distributed
- "The OLSR.ORG story" (Elektra)
- Mesh \neq Mobile Ad-Hoc Network (MANET)
- WiBACK: Wireless Backhaul
- Mesh, comprised of directed, IEEE 802.11-based links
- "Connecting the unconnected"
- Closed Source :

- How could OpenFlow \& Open vSwitch help?
https://www.fit.fraunhofer.de/de/fb/cscw/projects/wiback.html
- Load-Balancing
- Fast-Failover
- Prototyping of Mesh Protocols (original purpose of OpenFlow)
- More general: adaptation to local environment (i.e. exploit structures and patterns)
- Challenges
- Wireless Interfaces
- Control plane connection and topology discovery Yes Stai
- Routing and load-balancing
- Modulation and Coding
- Client handling

OF	Wirel. int.	Ctl-Conn.	Topo.-Disc.	M\&C	Routing	Clients	Focus
Yes	Static but custom monitoring	Out-of-band (SSID segregation)	OLSR	No	Client distribution	Active	Hybrid architecture with custom monitoring
Yes	Static	Out-of-band (add. NIC)	802.11 s	No	Chain	Wired	Experiments: WMN protocols vs. OF
Yes	Static	Out-of-Band (add. NIC)	802.11 s	No	Chain	Wired	Experiments: 802.11 s vs. OF
Yes	Static	In-band	OLSR	No	Gateway selection	Passive	Hybrid architecture and distribution of flows among gateways
Yes	Static	In-band (VPN)	$\begin{aligned} & \text { B.A.T.M. } \\ & \text { A.N. } \end{aligned}$	No	Generic link conditions	N/A	Hybrid architecture with dynamic loadbalancing
Yes	Extended-OF	Out-of-band (SDR)	Static	No	Policies	Passive	Control- and data-channel resource optimization via spectrum division (SDR)
No	Custom	In-band	Custom	Yes	MPLS	Passive	WBN solution with custom SDN protocol
Yes	Static	Out-of-band (add. NIC)	No	No	Manual	Wired	Experiments: simple flow redirection
Yes	Static	In-band	ExtendedOF	No	Shortest path	Passive	Shortest path routing with bootstrapping architecture
Yes	Static	Out-of-band (add. WNIC)	OLSR	No	Assisted OLSR	No	Study on hybrid routing strategies
Yes	Static but extendedOF monitoring	In-band	Extended- OF	No	Interference, Link-Load, CPU	No	Dynamic load-balancing process due to extended-OF monitoring

7. Conclusion

- It's fun setting up a simple SDN using a model train
- OpenWRT is "batteries included" (Open vSwitch, etc.), Ryu is easy to use
- OpenFlow based switching: Exploit local structure or pattern in addition to mesh protocols
- Do not control a full Freifunk Mesh by an almighty Admin-Team running an SDN controller

- ... challenging subject. There'll be dragons ©

Thanks for your time

Questions?

https://www.youtube.com/channel/UCOrOHTunRA2dtMWBWdDsdwQ

