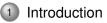
BMX7: Decentralized Routing Security for Community Mesh Networks

Axel Neumann

axel@ac.upc.edu

May 5, 2016 Wireless Battle Mesh v9 @ Porto, Portugal


Protocol Overview

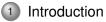
Protocol Messages

Integration and Validation

Conclusion and Appendix

Outline

- 2 Protocol Overview
- 3 Protocol Messages
- 4 Integration and Validation
- 5 Conclusion and Appendix


Protocol Overview

Protocol Messages

Integration and Validation

Conclusion and Appendix

Outline

- 2 Protocol Overview
- 3 Protocol Messages
- 4 Integration and Validation
- 5 Conclusion and Appendix

Introduction

••••••••

Protocol Overview

Protocol Messages

Integration and Validation

Conclusion and Appendix

BMX7! What? Why?

- BATMAN \rightarrow BatMan eXperimental \rightarrow BMX6 \rightarrow BMX7
- BMX6
 - Isolate node properties into single node description (e.g. addresses, name, networks)
 - Propagate node description once and reference it via its hash (e.g. from routing updates)
- BMX7
 - Signed node descriptions (RSA2048)
 - Authenticated node IDentities
 - Ownership proving (crypto-generated) IPv6 addresses
 - Secure routing against untrusted nodes
 - Capacity and interference aware routing metric

Introduction •••••••• Protocol Overview

Protocol Messages

Integration and Validation

Conclusion and Appendix

Small mesh(es) among friends

— logical link (encrypted)

Private vers. open networks

Group of friends

- Priority: Functioning network!
- Run any routing protocol
- No doubt about attacks from friends
- Excluding all potential attackers via full encryption

Other groups of friends...

- Same priority: Functioning network!
- Using different encryption key
 - \Rightarrow Logically disconnected networks
- Result: Bunch of closed networks...
 - No collaboration, no benefits!
 - Individual nodes are just isolated

Protocol Overview

Protocol Messages

Integration and Validation

Conclusion and Appendix

Small mesh(es) among friends

— logical link (encrypted)

----- physical link

Private vers. open networks

Group of friends

- Priority: Functioning network!
- Run any routing protocol
- No doubt about attacks from friends
- Excluding all potential attackers via full encryption

Other groups of friends...

- Same priority: Functioning network!
- Using different encryption key
 - \Rightarrow Logically disconnected networks

Result: Bunch of closed networks...

- No collaboration, no benefits!
- Individual nodes are just isolated

Protocol Overview

Protocol Messages

Integration and Validation

Conclusion and Appendix

Small mesh(es) among friends

—— logical link (encrypted) ----- physical link

Private vers. open networks

Group of friends

- Priority: Functioning network!
- Run any routing protocol
- No doubt about attacks from friends
- Excluding all potential attackers via full encryption

Other groups of friends...

- Same priority: Functioning network!
- Using different encryption key
 - \Rightarrow Logically disconnected networks

Result: Bunch of closed networks...

- No collaboration, no benefits!
- Individual nodes are just isolated

Protocol Overview

Protocol Messages

Integration and Validation

Conclusion and Appendix

Small mesh(es) among friends

—— logical link (encrypted) ----- physical link

Private vers. open networks

Group of friends

- Priority: Functioning network!
- Run any routing protocol
- No doubt about attacks from friends
- Excluding all potential attackers via full encryption

Other groups of friends...

- Same priority: Functioning network!
- Using different encryption key
 - \Rightarrow Logically disconnected networks

Result: Bunch of closed networks...

- No collaboration, no benefits!
- Individual nodes are just isolated

Protocol Overview

Protocol Messages

Integration and Validation

Conclusion and Appendix

Private vers. open networks

Small mesh(es) among friends

—— logical link (encrypted) ----- physical link

BMX7 can provide

- Allow individuals to use existing infrastructure
- Secure routing among trusted friends! Ensuring that unknown nodes can not mess with other node's routes

Protocol Messages

Integration and Validation

Conclusion and Appendix

Securing an open and decentralized network!!??

Common problem: Single node can attack

- control plane (route establishment)
- data plane (traffic forwarding)

Common Solution: Access control, exclude unreliable nodes

- Easy for traditional ISP
 - Centralized administration of own routers
 - Supported via: Authenticated OSPF, SOLSR, Babel HMAC
- Trust & reliability assessment in CNs is hard
 - Distributed administration, partially unknown nodes
 - Subversive attacks: selective dropping, DPI & eavesdropping
 - Trust is NOT a binary but a controversial policy decision

Protocol Overview

Protocol Messages

Integration and Validation

Conclusion and Appendix

Open network,

Trust challenge for CNs:

Reach consensus on set of reliable nodes

Exclusive trust set: Balancing...

- Openness: Exclude only malicious-proven nodes
 - How prove selective dropping or eavesdropping?
 - \Rightarrow Few excluded. Potential attackers remain!
 - \Rightarrow No more security :-(
- Security: Exclude all questionable nodes
 - e.g. anonymous, enthusiasts, kids, companies (competing), political, ...
 - \Rightarrow No more openness :-(
 - \Rightarrow Abandoned create own network \Rightarrow Partitioning!
- **Complexity to find consensus:** Hardly scales with increasing size!

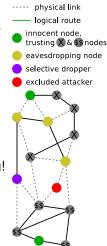
prone to subversive attacks — logical link ----- physical link logical route innocent node. trusting 🗙 & \$\$ nodes eavesdropping node selective dropper excluded attacker

Protocol Overview

Protocol Messages

Integration and Validation

Conclusion and Appendix


Trust challenge for CNs:

Reach consensus on set of reliable nodes

Exclusive trust set: Balancing...

- Openness: Exclude only malicious-proven nodes
 - How prove selective dropping or eavesdropping?
 ⇒ Few excluded. Potential attackers remain!
 ⇒ No more security :-(
- Security: Exclude all questionable nodes
 - e.g. anonymous, enthusiasts, kids, companies (competing), political, ...
 - \Rightarrow No more openness :-(
 - \Rightarrow Abandoned create own network \Rightarrow Partitioning!
- **Complexity to find consensus:** Hardly scales with increasing size!

Partitioned network, missing end-to-end routes — logical link

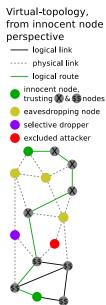
Protocol Overview

Protocol Messages

Integration and Validation

Conclusion and Appendix

Trust challenge for CNs:


Reach consensus on set of reliable nodes

Exclusive trust set: Balancing...

- Openness: Exclude only malicious-proven nodes
- Security: Exclude all questionable nodes
- Complexity to find consensus: Hardly scales!

Multiple trust sets -> parallel (virtual) topologies

- How many?
- Who decides?
- Consensus?
- Security?
- Overhead?

Protocol Overview

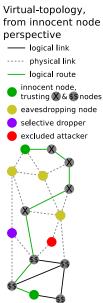
Protocol Messages

Integration and Validation

Conclusion and Appendix

Trust challenge for CNs: Reach consensus on set of reliable nodes

Exclusive trust set: Balancing...


- Openness: Exclude only malicious-proven nodes
- Security: Exclude all questionable nodes
- Complexity to find consensus: Hardly scales!

Multiple trust sets -> parallel (virtual) topologies

- How many? One for each (admin)
- Who decides? Each on his own!
- Consensus? Not needed!
- Security? User (node admin) tailored!
- Overhead? Lets see...

Freedom of choice is natural in public transport! Why not also for public community networks?

bmx7 BMX7: Decentralized Routing Security for for Community Mesh Networks

Protocol Overview

Protocol Messages

Integration and Validation

Conclusion and Appendix

Outline

2 Protocol Overview

3 Protocol Messages

4 Integration and Validation

Protocol Overview

Protocol Messages

Integration and Validation

Conclusion and Appendix

SEMTOR Protocol Objectives

Securely-Entrusted Multi-Topology Routing

• Secure against non-trusted nodes by logic exclusion

- Mutually-trusted and cooperative nodes can not be attacked by external
- No defense against attacks from trusted nodes!

Openness & Decentralization

- Support new and unknown but identifiable nodes
- Support user-individual sets of trusted nodes, defining each user's trusted virtual topology.
 - Allows unrestricted combination trust groups (overlapping and excluding group membership)
- No central registry or orchestration
- Scalability: Keep protocol overhead within capacities of common CN router hardware

Protocol Overview

Protocol Messages

Integration and Validation

Conclusion and Appendix

Basic approach and assumptions

- Basic idea: Let each node dictate its trusted nodes to discard topology-sensitive information from non-trusted nodes
 - \Rightarrow Routes establish only along trusted nodes
 - \Rightarrow Own traffic forwarded only along trusted nodes

Traffic owner given by packet's destination address

 Using identity-proving cryptographically-generated addresses (CGAs) for collision avoidance

Trust assessment out of scope! Considerable options

- Real-life community
- Social networks
- Public-key server (network of trust)
- Reputation system (individually tuned)
- Virtual topology of node X given by verified links between trusted nodes of X.

Protocol Overview

Protocol Messages

Integration and Validation

Conclusion and Appendix

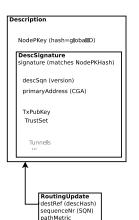
Outline

- 2 Protocol Overview
- ③ Protocol Messages
- 4 Integration and Validation
- 5 Conclusion and Appendix

Protocol Messages

Integration and Validation

- Basis: Destination-sequenced distance-vector routing
- RoutingUpdate references node description (via descHash)
- Description and heavy content requested on demand
 - node ID (hash of nodePKey)
 - Permanent public key (nodePKey)
 - Signature (self-signed)
 - Address (identity proving CGA)
 - Description version
 - List of **trusted nodes**, indicating eligible neighbors for propagating routing updates
 - Replaceable, weak, public key (TxPKey)
- TX signature for continuous link verification, using lightweight TxPKey

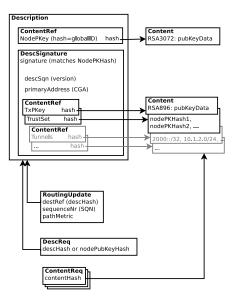


Protocol Overview

Protocol Messages

Integration and Validation

- Basis: Destination-sequenced distance-vector routing
- RoutingUpdate references node description (via descHash)
- Description and heavy content requested on demand
 - node ID (hash of nodePKey)
 - Permanent public key (nodePKey)
 - Signature (self-signed)
 - Address (identity proving CGA)
 - Description version
 - List of **trusted nodes**, indicating eligible neighbors for propagating routing updates
 - Replaceable, weak, public key (TxPKey)
- TX signature for continuous link verification, using lightweight TxPKey

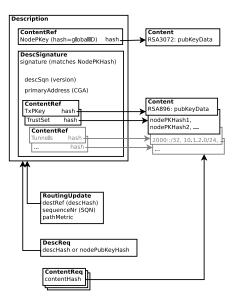


Protocol Overview

Protocol Messages

Integration and Validation

- Basis: Destination-sequenced distance-vector routing
- RoutingUpdate references node description (via descHash)
- Description and heavy content requested on demand
 - node ID (hash of nodePKey)
 - Permanent public key (nodePKey)
 - Signature (self-signed)
 - Address (identity proving CGA)
 - Description version
 - List of **trusted nodes**, indicating eligible neighbors for propagating routing updates
 - Replaceable, weak, public key (TxPKey)
- TX signature for continuous link verification, using lightweight TxPKey

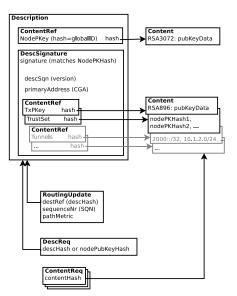


Protocol Overview

Protocol Messages

Integration and Validation

- Basis: Destination-sequenced distance-vector routing
- RoutingUpdate references node description (via descHash)
- Description and heavy content requested on demand
 - node ID (hash of nodePKey)
 - Permanent public key (nodePKey)
 - Signature (self-signed)
 - Address (identity proving CGA)
 - Description version
 - List of **trusted nodes**, indicating eligible neighbors for propagating routing updates
 - Replaceable, weak, public key (TxPKey)
- TX signature for continuous link verification, using lightweight TxPKey

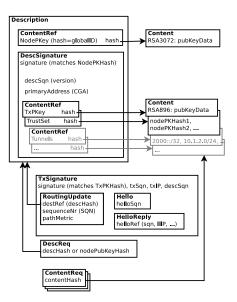


Protocol Overview

Protocol Messages

Integration and Validation

- Basis: Destination-sequenced distance-vector routing
- RoutingUpdate references node description (via descHash)
- Description and heavy content requested on demand
 - node ID (hash of nodePKey)
 - Permanent public key (nodePKey)
 - Signature (self-signed)
 - Address (identity proving CGA)
 - Description version
 - List of trusted nodes, indicating eligible neighbors for propagating routing updates
 - Replaceable, weak, public key (TxPKey)
- TX signature for continuous link verification, using lightweight TxPKey



Protocol Overview

Protocol Messages

Integration and Validation

- Basis: Destination-sequenced distance-vector routing
- RoutingUpdate references node description (via descHash)
- Description and heavy content requested on demand
 - node ID (hash of nodePKey)
 - Permanent public key (nodePKey)
 - Signature (self-signed)
 - Address (identity proving CGA)
 - Description version
 - List of trusted nodes, indicating eligible neighbors for propagating routing updates
 - Replaceable, weak, public key (TxPKey)
- TX signature for continuous link verification, using lightweight TxPKey

Protocol Overview

Protocol Messages

Integration and Validation

Conclusion and Appendix

Packet nodePKHash (transmitter's identity) Description ContentRef Content NodePKev (hash=globallD) RSA3072: pubKevData hash DescSignature signature (matches NodePKHash) Version descSan (version) primaryAddress (CGA) Content ContentRef RSA896: pubKevData TxPKev hash TrustSet hash nodePKHash1. nodePKHash2.... ContentRef Tunnels hash 2000::/32. 10.1.2.0/24 TxSignature signature (matches TxPKHash), txSgn, txIP, descSgn RoutingUpdate Hello destRef (descHash) helloSan sequenceNr (SON) HelloReply pathMetric helloRef (san, IIIP, ...) DescReg descHash or nodePubKeyHash ContentRea contentHash

- Basis: Destination-sequenced distance-vector routing
- RoutingUpdate references node description (via descHash)
- Description and heavy content requested on demand
 - node ID (hash of nodePKey)
 - Permanent public key (nodePKey)
 - Signature (self-signed)
 - Address (identity proving CGA)
 - Description version
 - List of trusted nodes, indicating eligible neighbors for propagating routing updates
 - Replaceable, weak, public key (TxPKey)
- TX signature for continuous link verification, using lightweight TxPKey

Protocol Overview

Protocol Messages

Integration and Validation

Conclusion and Appendix

Outline

- 2 Protocol Overview
- 3 Protocol Messages
- 4 Integration and Validation

Protocol Overview

Protocol Messages

Integration and Validation

Conclusion and Appendix

First Integrations in existing firmwares

- qMp
- Libre mesh

	Ope	nWrt 🖇	Status - Syst	em ≁ Netwo	rk + Logout					AUTO REFRESI	HON
	Stat	lus Node	:5								
Mesh m Node ID: 5724 Via neighbo mic1000			es 43D96B29D6438 Via device br-lan		link-local IPv6 address R	3d96:b29d:643e:3 loute metric 64M	496:54b4 A/A/A/A Desc. size 461+413		RSA2048		
	Orig	inators Name	Short ID	S/s/T/t	Primary IPv6 address		Via neighbour	Metric	Last desc.	Last ref.	
	٠	OpenWrt	0EC60E30	A/A/A/A	fd70:ec6:e30:2609:3a07:7251:a	ac20:780d		257G	3053	1	
	٠	mlc1000	57249CF4	A/A/A/A	fd70:5724:9cf4:3d96:b29d:643	e:3496:54b4	mlc1000	Meee	63	0	
	٠	mlc1001	796C3EFA	A/A/A/A	fd70:796c:3efa:77ee:aade:896	0:7813:afdf	mlc1000	706M	57	Б	
	۲	mlc1002	072DD84D	A/A/A/A	fd70:72d:d84d:19a0:ebd6:c78:1	f945:6223	mlc1000	576M	56	1	
	٠	mlc1003	CBE57826	A/A/A/A	fd70:cbe5:7826:fd51:3f74:37ab	:9136:5637	mlc1000	495M	55	1	
	۲	mlc1004	9BCBD58F	A/A/A/A	fd70:9bcb:d58f:fb3:274f:7b72:6	66b9:654a	mlc1000	443M	53	0	
	٠	mlc1005	FA76DFA2	A/A/A/A	fd70:fa76:dfa2:c977:d108:7d1e	e:6523:170e	mlc1000	403M	49	0	
	۲	mlc1007	44A8C7D0	A/A/A/A	fd70:44a8:c7d0:99a2:cb60:1e3	3f:b4eb:8a71	mlc1000	310M	37	0	
bmx7 BMX7: D	ecer	ntralized	BD692441 Routing	Security	fd70:bd69:2441:6b8:4648:e4c:for for Community	mao:3736 / Mesh Ne	etworks	296M	33	0	
	-		ETOLOOEO	A /A /A /A	(Jao man of the standard standard)	4-0-1-000		00414			

Introduction
00000000000

Protocol Overview

Protocol Messages

Integration and Validation

Conclusion and Appendix

Validation

- **Open-source implementation** (bmx6-based)
- Real embedded target device (typical hardware for CNs)
- Stressed with protocol traffic generated by emulated network
- SEMTOR implementation running in real and virtual nodes

Characteristic	Details				
Type / CPU	TP-Link TL-WR703N, Atheros				
	AR7240@400 MHz				
Wireless	AR9331, 802.11bgn 150 Mbps				
	@100 mW				
Flash / Memory	4 MB / 32 MB				
Ports	100 MBit Ethernet, USB 2.0				
Power supply	5 V, 100 mA, 0.5 W				
Cost	approx 10 Euro				
OS and distro	Linux OpenWrt (v15.05, r46943)				
Further reading	http://wiki.openwrt.org/toh/tp-				
-	link/tl-wr703n				
Routing	BMX6 semtor branch, git rev				
-	2fb169f				
Libraries	PolarSSL version 1.3.4				

Table 1: HW and OS characteristics of used target device

Protocol Overview

Protocol Messages

Integration and Validation

Conclusion and Appendix

Validation

- Open-source implementation (bmx6-based)
- Real embedded target device (typical hardware for CNs)
- Stressed with protocol traffic generated by emulated network
- SEMTOR implementation running in real and virtual nodes

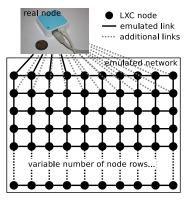
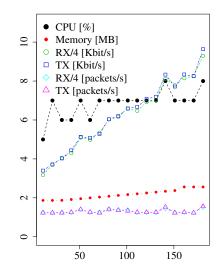


Table 2 : Default parametrization of emulation and protocol

Parameter	Default [range]
Network size (number of nodes)	100 [10180]
Density (number of links)	4 [420]
Node interfaces	1
Grid network structure	10x10 [10x110x18]
Link dynamics and loss	static @ zero loss
Primary key strength	RSA3072
TxKey strength	RSA896 [5121536]
Description-update interval	36000 s [1004 s]
Routing updates interval	6 s
Link-probing interval	0.8 s
Max message aggregation (TX)	0.8 s
interval	

Protocol Overview

Protocol Messages


Integration and Validation

Conclusion and Appendix

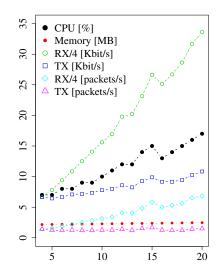
Impact of network size

Varying number of nodes

- Linearly increasing CPU, memory, data overhead
- Message aggregation achieves constant packet rate

Protocol Overview

Protocol Messages


Integration and Validation

Conclusion and Appendix

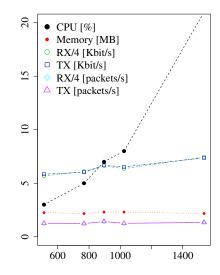
Impact of network density

Varying number of links with target device

- Linearly increasing CPU and data overhead
- Unaffected memory consumption (memory for description content allocated anyway)

Protocol Overview

Protocol Messages


Integration and Validation

Conclusion and Appendix

Impact of asymmetric key strength

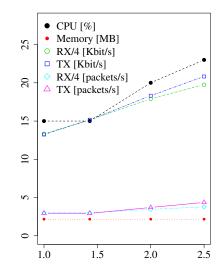
Varying RSA key length used for link verification

- Linearly increasing data overhead
- Unaffected memory consumption and TX rate
- Exponentially increasing CPU overhead (typical for RSA cryptography)

Protocol Overview

Protocol Messages

Integration and Validation


Conclusion and Appendix

Impact of description update frequency

Varying total number of updates over time

 Linearly increasing CPU and protocol data overhead

 \Rightarrow Potential bottleneck as node-reconfiguration rate can not be controlled

Protocol Overview

Protocol Messages

Integration and Validation

Conclusion and Appendix

Outline

- **Protocol Overview**
- Protocol Messages

Protocol Overview

Protocol Messages

Integration and Validation

Conclusion and Appendix

Conclusion and Outlook

- Findings:
 - Pointed requirements for open and decentralized CNs
 - Described mechanisms for user-individual trusted routing
 - Validated our approach via implementation & testing on real embedded hardware
 - Showed feasibility of strong asymmetric cryptography for securing routing-topology while satisfying scalability requirements for typical sized CN clouds with 100+ nodes.
 - Identified (based on benchmarking results) scalability limits and network-characteristics with significant impact.
- Next:
 - Allow trust import from particular (highly-trusted) nodes
 - Denial of Service attacks... (there are some ideas)

Protocol Overview

Protocol Messages

Integration and Validation

Conclusion and Appendix

Thank you!

Questions?

http://bmx6.net

https://lists.bmx6.net/cgi-bin/mailman/listinfo/bmxd

BMX7: Decentralized Routing Security for for Community Mesh Networks

Protocol Overview

Protocol Messages

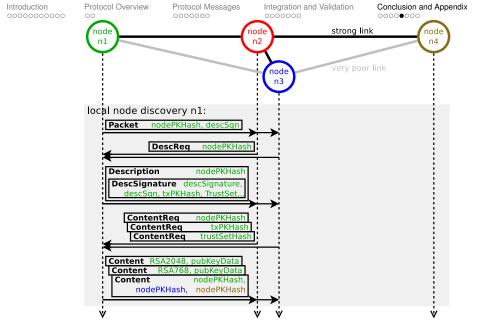
Integration and Validation

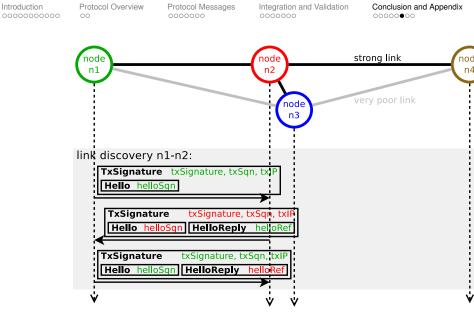
Conclusion and Appendix

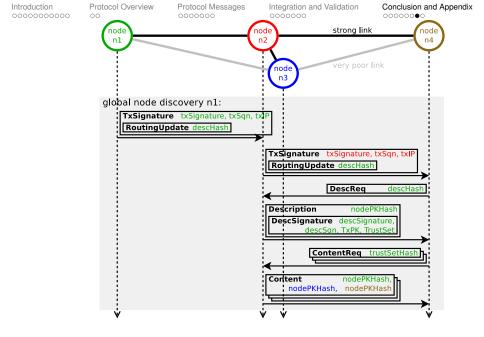
Appendix

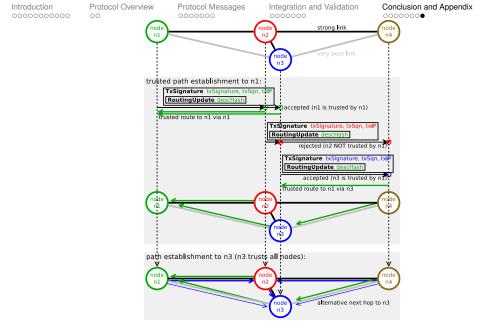
bmx7 BMX7: Decentralized Routing Security for for Community Mesh Networks

Protocol Overview


Protocol Messages


Integration and Validation


Conclusion and Appendix


Bibliography

- A. Neumann, E. López, L. Cerdà-Alabern, and L. Navarro, "Securely-entrusted multi-topology routing for community networks". In: 2016 12th Annual Conference on Wireless On-demand Network Systems and Services (WONS). Jan. 2016, pp. 1-8.
- L. Cerdà-Alabern, A. Neumann, and L. Maccari. "Experimental Evaluation of BMX6 Routing Metrics in a 802.11an Wireless-Community Mesh Network". In: 4th International Workshop on Community Networks and Bottom-up- Broadband (CNBuB'2015). Rome, Italy, Aug. 2015.
- A. Neumann, E. López, and L. Navarro. "Evaluation of mesh routing protocols for wireless community networks". In: Computer Networks 93, Part2 (2015), pp. 308-323, Community Networks, ISSN: 1389-1286
- R. Pueyo, V. Oncins, and A. Neumann. "Enhancing reflection and self-determination in a real-life community mesh network". In: Computer Networks 93, Part 2 (2015), Community Networks, pp. 297–307. ISSN: 1389-1286.

